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Wave motion

Type of waves:

There are two types of wave motion.

(i) Transverse wave: When the particles of the medium vibrate at right angles to the

direction of propagation of the wave, the wave is said to be a transverse wave.

(ii) Longitudinal wave: When the particles of the medium vibrates parallel to

the direction of propagation of the wave the wave is called a longitudinal wave. e.g.

sound wave in solids, liquids and gases.

Progressive wave: A wave propagating from one point to another in a medium

without being subjected to any boundary condition, is called a progressive wave.

Q. Write down the characteristics of progressive wave

(i) Every particle describes simple harmonic motion along the direction of propa-

gation of wave, there being a change of phase from point to point.

(ii) The wave velocity in a given medium is a constant determined by the density

and the elastic constant of the medium.

(iii) Only the energy is carried by the advancement of the waveform in the direction

of propagation of the wave.

(iv) The phase difference between two vibrating particles on the line of propagation

is proportional to the path difference between the particles.

Q. Write down the equation of the plane progressive wave.
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Consider a wave moves along the positive direction of x with a velocity v. Let the

displacement at any instant of time t at x = 0 is

y = asinωt

Here, v be the wave velocity. We have from fig. for λ displacement phase change is

2π

So for x displacement the phase change φ = 2π
λ
x

So we get motion at P is

y = asin
(
ωt− φ

)
y = asin

(
ωt− 2π

λ
x
)

= f(vt− x)

y = asin
2π

λ

(
vt− x

)
where ω = 2πn = 2πv

λ
.

If the wave moves towards the negative direction of the x-axis, the displacement

y = asin
2π

λ

(
vt+ x

)
= f(vt+ x)

Q. Define Phase velocity

At any instant in a progressive wave, the quantity vt − x and hence f(vt − x)

remains the same at all points on a plane perpendicular to the x-axis. Thus the wave

fronts are plane., so that f(vt−x) represents a plane wave propagating in the positive

x-direction. The quantity vt− x is the phase.

Let y(x, t) denotes the value of the field parameter at x at time t. As the wave

moves in the positive x-direction, the same value occurs at x + dx at time t + dt.

Hence

y(x, t) = y(x+ dx, t+ dt) = constant

f(vt− x) = f(v(t+ dt)− (x+ dx) = constant

So, we get

vt− x = constant

2



vdt− dx = 0

v =
dx

dt
= vp

Hence, wave velocity (v) = (vp) Phase velocity

OR

At any instant in a progressive wave, the quantity ωt− kx and hence f(ωt− kx)

remains the same at all points on a plane perpendicular to the x-axis. Thus the

wave fronts are plane., so that f(ωt− kx) represents a plane wave propagating in the

positive x-direction. The quantity ωt− kx is the phase.

Let y(x, t) denotes the value of the field parameter at x at time t. As the wave

moves in the positive x-direction, the same value occurs at x + dx at time t + dt.

Hence

y(x, t) = y(x+ dx, t+ dt) = constant

f(ωt− kx) = f(ω(t+ dt)− k(x+ dx) = constant

So, we get

ωt− kx = constant

ωdt− kdx = 0

v =
dx

dt
=
ω

k
= vp

Hence, wave velocity (v) = (vp) Phase velocity

Q. Derive the differential equation of wave equation in one dimension.

Let a plane progressive wave propagating in the +ve x-direction. The wave form

is represented by

y = f(vt− x)

Let z = vt− x, so we get
∂z

∂t
= v

3



∂z

∂x
= −1

Now,
∂y

∂x
=
∂y

∂z

∂z

∂x
= −∂y

∂z

∂2y

∂x2
=

∂

∂x

∂y

∂x
= − ∂

∂z

∂y

∂z

∂z

∂x
= −1.− 1.

∂2y

∂z2
(1)

and
∂y

∂t
=
∂y

∂z

∂z

∂t
= v

∂y

∂z

∂2y

∂t2
= v

∂

∂t

∂y

∂z
= v

∂

∂z

∂y

∂z

∂z

∂t
= v2∂

2y

∂z2

∂2y

∂t2
= v2∂

2y

∂z2
(2)

From (1) and (2), we get
∂2y

∂t2
= v2 ∂

2y

∂x2

Here v is the phase or wave velocity of the wave. This equation is known as the

differential equation in one dimension for plane waves. The general solution is

y = f1(vt− x) + f2(vt+ x)

Note: In three dimension, the differential equation for waves takes the form

∂2y

∂t2
= v2∇2y

Where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Y = asin
(
ωt− k1x− k2y − k3z

)
Y = asin

(
ωt− (k1î+ k2ĵ + k3k̂).(xî+ yĵ + zk̂)

)
Y = asin

(
ωt− ~k.~r

)
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where ~k = k1î+ k2ĵ + k3k̂.

Q. Derive the relation between particle velocity (U) and wave velocity (v).

When a progressive wave travels through a medium, the displacement of a particle

of the medium at any instant of time

y = asin
2π

λ

(
vt− x

)
So, the velocity of the particle

U =
dy

dt
=

2πv

λ
acos

2π

λ

(
vt− x

)
(1)

Again we have
dy

dx
= −2π

λ
acos

2π

λ

(
vt− x

)
(2)

So, we get from (1) and (2)

U = −v dy
dx

Note: For longitudinal wave dy
dx

represents the rarefication or contraction.

Q. Calculate the energy of a progressive wave.

When a progressive wave travels through a medium, the displacement of a particle

of the medium at any instant of time

y = asin
2π

λ

(
vt− x

)
So, the velocity of the particle

U =
dy

dt
=

2πv

λ
acos

2π

λ

(
vt− x

)
So, acceleration of the particle

f =
d2y

dt2
= −4π2v2

λ2
asin

2π

λ

(
vt− x

)
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f =
d2y

dt2
= −4π2v2

λ2
y

Let ρ be the density of the medium. So, kinetic energy per unit volume at any

instant of time

EK.E. =
1

2
ρ

(
dy

dt

)2

EK.E. =
1

2
ρ

(
2πv

λ
acos

2π

λ

(
vt− x

))2

EK.E. =
1

2
ρ

4π2v2

λ2
a2cos2 2π

λ

(
vt− x

)
(1)

Now, potential energy dEP.E. =work done for the displacement dy = dy × force

dEP.E. = dy × ρd
2y

dt2

dEP.E. = ρ
4π2v2

λ2
ydy

Total potential energy for the displacement y

EP.E. = ρ
4π2v2

λ2

∫ y

0
ydy

EP.E. = ρ
4π2v2

λ2

y2

2

EP.E. =
1

2
ρ

4π2v2

λ2
a2sin2 2π

λ

(
vt− x

)
(2)

Total energy per volume at any instant of time

E = EK.E. + EP.E.

E =
1

2
ρ

4π2v2

λ2
a2cos2 2π

λ

(
vt− x

)
+

1

2
ρ

4π2v2

λ2
a2sin2 2π

λ

(
vt− x

)

E =
1

2
ρ

4π2v2

λ2
a2

(
cos2 2π

λ

(
vt− x

)
+ sin2 2π

λ

(
vt− x

))

E =
1

2
ρ

4π2v2

λ2
a2 = constant
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Q. What is the distribution of energy in a plane progressive wave.

We have the kinetic energy per unit volume at any instant of time

EK.E. =
1

2
ρ

4π2v2

λ2
a2cos2 2π

λ

(
vt− x

))
(1)

So, mean kinetic energy for a full wave length

Ē =
1

λ

∫ λ

0

1

2
ρ

4π2v2

λ2
a2cos2 2π

λ

(
vt− x

)
dλ

Ē =
1

λ

1

2
ρ

4π2v2

λ2
a2
∫ λ

0
cos2 2π

λ

(
vt− x

)
dλ

Ē =
1

λ

1

2
ρ

4π2v2

λ2
a2
∫ λ

0

(
1 + cos

4π

λ

(
vt− x

))
dλ

Ē =
1

λ

1

2
ρ

4π2v2

λ2
a2λ

2

Ē =
1

2
× E

Q. Calculate the distribution of pressure in longitudinal waves.

Let a longitudinal wave propagates along x-axis in a medium (fluid). Now, we

consider a layer AB at a distance x from O and thickness of the layer AB= dx.

Let α is the area of the layer.

So, volume of the layer V = αdx

Let dp be the pressure difference between the two faces.

So the particles on the planes A and B are displaced due to the excess pressure dP

produced by the progressive wave. Let displacement of the layer A is y and that of

B is y + dy According to the fig.

OA′ = x+ y

OB′ = x+ dx+ y + dy = x+ dx+ y +
∂y

∂x
δx

7



Thickness of the displaced layer

A′B′ = OB′ −OA′ = (x+ dx+ y +
∂y

∂x
δx)− (x+ y) = dx+

∂y

∂x
δx

Volume of the displaced layer

V ′ = α(dx+
∂y

∂x
δx)

Change of volume

dV = V ′ − V = α(dx+
∂y

∂x
δx)− αdx = α

∂y

∂x
δx

We have from the definition of Bulk modulus

K = − dpdV
V

= − dP
α ∂y

∂x

αdx
δx

Excess pressure on the layer of the medium (fluid)

dP = −K∂y

∂x

This pressure is known as the sound pressure or acoustic pressure. When a progressive

wave travels through a medium, the displacement of a particle of the medium at any

instant of time

y = asin
2π

λ

(
vt− x

)
Hence,

∂y

∂x
= −2π

λ
acos

2π

λ

(
vt− x

)
So, we get pressure difference

dp = −K 2π

λ
acos

2π

λ

(
vt− x

)

dp = K
2π

λ
asin

2π

λ

(
vt− x+

π

2

)
So, we see that dp lag before y by π/2.

Q. State Principle of superposition.
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When two or more waves propagating independently of one another in a medium

at the same time superimpose, the resultant displacement, velocity, and accelera-

tion of any particle of the medium in the region of overlap is the vector sum of the

displacements, velocities and accelerations of the particle caused by the individual

waves. This is known as the principle of superposition.

Let ~y1, ~y2, ~y3, ..... be the displacement. According to the principle of superpositon

~y = ~y1 + ~y2 + ~y3 + .....

Q. Define group velocity.

If two or more plane simple harmonic waves of the same amplitude but different

frequencies superimpose, a group of waves is formed. The amplitude of the group

changes with distance, and the velocity with which the maximum of the wave group

travels is refereed to as the group velocity. The energy is transmitted with the group

velocity.

We consider two waves of equal amplitude A and slightly different angular fre-

quencies ω and ω + dω, traveling with the propagation constant k and k + dk. i.e.

the displacement

y1 = Asin(ωt− kx)

and

y2 = Asin((ω + dω)t− (k + dk)x)

So, the resultant displacement

y = y1 + y2 = Asin(ωt− kx) + Asin((ω + dω)t− (k + dk)x)

y = 2Acos

(
tdω − xdk

2

)
sin

((
ω +

dω

2

)
t−

(
k +

dk

2

))
The phase velocity of the composite wave is

vp =
ω + dω/2

k + dk/2
6= ω

k
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The amplitude represented by the cosine term advance with the group velocity vg. If

the phase tdω−xdk
2

associated with it progresses to (x+ dx) at time (t+ dt), we have

tdω − xdk = (t+ dt)dω − (x+ dx)dk

So, the group velocity

vg =
dx

dt
=
dω

dk

Again, we have

ω = vk

dω = vdk + kdv

vg = v + k
dv

dk

Again,

k =
2π

λ

λ =
2π

k

dλ

dk
= −2π

k2

So, we get

vg = v +
dv

dλ

dλ

dk

vg = v − 2π

k2
k
dv

dk

vg = v − 2π

k

dv

dλ

This gives the relation between group velocity and the phase velocity.

For a non-dispersive medium, dv
dλ

= 0. Hence

vg = v = vp

i.e. The group velocity and the phase velocity are equal.

In a dispersive medium v increases with increasing λ, Hence, dv
dλ

= +ve So, vg < v

i.e. the group velocity is less than the phase velocity.
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Q. What is stationary wave.

When two identical progressive acoustic waves moving in a medium along the

same straight line with the same velocity in opposite directions superimpose produce

the stationary waves or standing waves.

This waves are confined to the region of the medium where the progressive waves

overlap. They do not advance through the medium, but alternately expand and

shrink.

Q. Explain the formation of stationary waves by analytical method.

We consider the particle displacement for the wave propagating in the +ve x-

direction

y1 = asin
2π

λ

(
vt− x

)
The wave propagating in the -ve x-direction

y2 = asin
2π

λ

(
vt+ x

)
When these two waves superpose, the resultant particle displacement is

y = y1 + y2

y = asin
2π

λ

(
vt− x

)
+ asin

2π

λ

(
vt+ x

)

y = 2acos
2πx

λ
sin

2πvt

λ

y = Asin
2πvt

λ
(1)

where amplitude

A = 2acos
2πx

λ

The equation (1) is known as stationary wave. This equation shows that the amplitude

A of the stationary wave is not a constant, it is a periodic function of x.

Position of Nodes:
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At nodes, A = 0, Hence,

cos
2πx

λ
= 0 = cos(2n+ 1)

π

2

where, n = 0,±1,±2,etc.
2πx

λ
= (2n+ 1)

π

2

x = xn = (2n+ 1)
λ

4

So, for n = 0,

x0 =
λ

4

So, for n = 1,

x1 = 3
λ

4

x1 − x1 = 3
λ

4
− λ

4
=
λ

2

In general

xn+1 − xn = (2(n+ 1) + 1)
λ

4
− (2n+ 1)

λ

4
=
λ

2

Hence, the distance between two consecutive nodes is λ
2

Position of antinodes:

At antinodes, A = max. = ±2a, Hence,

cos
2πx

λ
= 1 = cosnπ

where, n = 0,±1,±2,etc.
2πx

λ
= nπ

x = xn =
nλ

2

So, for n = 0,

x1 = 0

So, for n = 1,

x1 =
λ

2
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x1 − x1 =
λ

2
− 0 =

λ

2

In general

xn+1 − xn = (n+ 1)
λ

2
− nλ

2
=
λ

2

Hence, the distance between two consecutive antinodes is λ
2
.

Q. Calculate the particle velocity and acceleration in a stationary wave.

We have the equation of a stationary wave

y = 2acos
2πx

λ
sin

2πvt

λ

So, the particle velocity

U =
dy

dt
=

4πav

λ
cos

2πx

λ
cos

2πvt

λ

Position of zero velocity:

At nodes, U = 0, Hence,

cos
2πx

λ
= 0 = cos(2n+ 1)

π

2

where, n = 0,±1,±2,etc.
2πx

λ
= (2n+ 1)

π

2

x = xn = (2n+ 1)
λ

4

Position of maximum velocity:

At antinodes, U = max. = 4πav
λ

, Hence,

cos
2πx

λ
= 1 = cosnπ
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where, n = 0,±1,±2,etc.
2πx

λ
= nπ

x = xn =
nλ

2

Acceleration:

Acceleration of the particle

f =
dU

dt
= −8π2av2

λ2
cos

2πx

λ
sin

2πvt

λ

f == −8π2v2

λ2
y

Q. Calculate the variation of pressure at node and antinodes in a stationary wave.

We have the equation of a stationary wave

y = 2acos
2πx

λ
sin

2πvt

λ

We have the variation of excess pressure

∆P = −Kdy

dx
=

4πav

λ
sin

2πx

λ
sin

2πvt

λ

At the Position of nodes:

At nodes, ∆P = max = 4πav
λ

, Hence,

sin
2πx

λ
= 1 = sin(2n+ 1)

π

2

where, n = 0,±1,±2,etc.
2πx

λ
= (2n+ 1)

π

2

14



x = xn = (2n+ 1)
λ

4

At the Position of antinodes:

At antinodes, ∆P = 0, Hence,

sin
2πx

λ
= 0 = sinnπ

where, n = 0,±1,±2,etc.
2πx

λ
= nπ

x = xn =
nλ

2

Q. Explain the stationary wave produced by reflection.

If a boundary surface is placed in the path of a progressive wave, the wave is

reflected from the surface. The reflected wave travels backwards and superimpose on

the forward wave, thus producing stationary waves.

Let the particle displacement for the incident wave moving in the positive x-

direction be

y1 = asin
2π

λ

(
vt− x

)
The reflected wave moves in the negative x-direction

y2 = arsin
2π

λ

(
vt+ x

)
= Rasin

2π

λ

(
vt+ x

)
where R(< 1) is the reflection coefficient. This is defined as the ratio of the reflected

amplitude(ar) to the incident amplitude(a). i.e.

R =
ar
a

Let the reflector is placed at x = 0. So we get

y1 = asin
2π

λ
vt
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and

y2 = Rasin
2π

λ
vt

At this point, the resultant displacement of the particle

y = y1 + y2 = (1 +R)asin
2π

λ
vt

Pressure calculation: We have the excess pressure

P = −Kdy

dx

So, excess pressure due to incident wave

Pin = −Kdy

dx

)
x=0

=
2πKa

λ
cos

2π

λ
vt

So, excess pressure due to reflected wave

Pre = −Kdy

dx

)
x=0

= −2πKa

λ
Rcos

2π

λ
vt

Hence, the resultant excess pressure at x = 0

P = Pin + Pre =
2πKa

λ
(1−R)cos

2π

λ
vt

Case I: If the reflector is perfectly rigid, then the particle displacement y = 0 at

x = 0. Hence

R = −1 = eiπ

This shows that at the point of reflection, there is a phase shift of φ = π between

the incident and reflected wave. Here, the boundary is a displacement node and a

pressure antinode. .

Case II: If the reflector move freely, the resultant excess pressure P = 0 at x = 0.

Hence

R = 1 = ei.0

So, there is no change in phase(φ = 0). Here the boundary is a pressure node and a

displacement antinode.
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The above two cases represent extreme situations. If the reflecting wall is not

perfecrtly rigid, R lies between −1 and φ = 0. The the reflected wave has a smaller

amplitude and carries less energy than incident wave.

Q. What is interference of sound.

When two progressive acoustic waves of same amplitude and but different phases

moving in a medium along the same direction with the same velocity superimpose at

a point produce the interference.

Q. Find out the conditions for interference of sound

We consider two progressive waves of same amplitude and wavelength as

y1 = asin
2π

λ

(
vt− x1

)
and

y2 = asin
2π

λ

(
vt− x2

)
According to the Principle of superposition, the resultant displacement

y = y1 + y2 = asin
2π

λ

(
vt− x1

)
+ asin

2π

λ

(
vt− x2

)

y = 2acos
π

λ

(
x2 − x1

)
sin

2π

λ

(
vt− x1 + x2

2

)
y = Asin

2π

λ

(
vt− x1 + x2

2

)
This is a S.H. Motion of amplitude

A = 2acos
π

λ

(
x2 − x1

)
which depends upon the path difference x2 − x1.

Case I: The amplitude A will be minimum i.e. A = 0, when

cos
π

λ

(
x2 − x1

)
= cos(2n+ 1)

π

2

17



π

λ

(
x2 − x1

)
= (2n+ 1)

π

2

Hence, path difference for minimum sound

x2 − x1 = (2n+ 1)
λ

2

So, minimum sound is obtained, when two waves coincide at a point in opposite

phases.

Case II: The amplitude A will be maximum, i.e. A = 2a, when

cos
π

λ

(
x2 − x1

)
= cosnπ

π

λ

(
x2 − x1

)
= nπ = (2n)

π

2

Hence, path difference for maximum sound

x2 − x1 = 2n
λ

2

So, maximum sound is obtained when two waves coincide at point in same phase.

Condition for interference:

(i) For interference, amplitude (a) and wavelength (λ) must be same.

(ii) For interference, two waves must propagate along the same direction.

(iii)For interference,path difference for minimum sound

x2 − x1 = (2n+ 1)
λ

2

So, minimum sound is obtained, when two waves coincide at a point in opposite

phases.

(iv)For interference, path difference for maximum sound

x2 − x1 = 2n
λ

2

So, maximum sound is obtained when two waves coincide at point in same phase.

Q. Define beats
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When two simple harmonic motions of slightly different frequencies superimpose,

the amplitude of the resultant vibration changes regularly with time between a max-

imum and a minimum. This phenomenon is referred to as beats.

This is observed when two tuning forks or two sources of sound of nearly equal

frequencies are sounded together. The method of beats is a very important one in

the measurement of an unknown frequency.

Q. Give the analytical treatment of beats or What happens when two vibration

of slightly different frequencies along same straight line.

Let two S.H. M. are

y1 = asin2πn1t

and

y2 = asin2πn2t

Here n1 is slightly greater than n2. Due to superposition , the resultant displacement

is

y = y1 + y2 = asin2πn1t+ asin2πn2t

y = 2acos2π
(
n1 − n2

2

)
tsin2π

(
n1 + n2

2

)
t

y = Asin2π
(
n1 + n2

2

)
t

where the amplitude A = 2acos2π
(
n1−n2

2

)
t changes with time.

Beat frequency: Number of maximum sound or minimum sound is known as beat

frequency. Hence

Beat frequency = difference of frequency= n1 − n2

Case I: For maximum sound, the amplitude A = 2a, when

cos2π
(
n1 − n2

2

)
t = ±1 = cosmπ
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where m = 0,±1± 2, ....

2π
(
n1 − n2

2

)
t = mπ

t = tm =
m

n1 − n2

So, the time interval between two maximum sound

tm+1 − tm =
m+ 1

n1 − n2

− m

n1 − n2

=
1

n1 − n2

Case II: For minimum sound, the amplitude A = 0, when

cos2π
(
n1 − n2

2

)
t = 0 = cos(2m+ 1)

π

2

where m = 0, 1, 2, ....

2π
(
n1 − n2

2

)
t = (2m+ 1)

π

2

t = tm =
(2m+ 1)

2(n1 − n2)

So, the time interval between two minimum sound

tm+1 − tm =
2m+ 3

2(n1 − n2)
− 2m+ 1

2(n1 − n2)
=

1

n1 − n2

Q. Calculate the velocity of propagation of plane longitudinal waves in a elastic

fluid.

For this calculation we make the following assumption.

(i) The medium is homogeneous and isotropic.

(ii) Dissipative forces originating from viscosity and thermal conduction are absent.

(iii) The effect of gravity is negligible. Hence, the pressure and the density are the

same everywhere in the medium.

(iv) Hook’s law holds good.

Let a longitudinal wave propagates along x-axis in a medium (fluid). Now, we

consider a layer AB at a distance x from O and thickness of the layer AB= dx.
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Let α is the area of the layer.

So, volume of the layer V = αdx

Let there is an excess pressure between the faces of the layer AB. So the particles

on the planes A and B are displaced due to the excess pressure ∆P produced by

the progressive wave. Let displacement of the layer A is y and that of B is y + dy

According to the fig.

OA′ = x+ y

OB′ = x+ dx+ y + dy = x+ dx+ y +
∂y

∂x
δx

Thickness of the displaced layer

A′B′ = OB′ −OA′ = (x+ dx+ y +
∂y

∂x
δx)− (x+ y) = dx+

∂y

∂x
δx

Volume of the displaced layer

V ′ = α(dx+
∂y

∂x
δx)

Change of volume

dV = V ′ − V = α(dx+
∂y

∂x
δx)− αdx = α

∂y

∂x
δx

We have from the definition of Bulk modulus

K = −∆p
dV
V

= − ∆P
α ∂y

∂x

αdx
δx

Excess pressure on the layer of the medium (fluid)

∆P = −K∂y

∂x

This pressure is known as the sound pressure or acoustic pressure. Now, the excess

pressure

= −∂∆p

∂x
δx

This is negative because the unbalanced pressure is in the negative x-direction. So,

the excess force acting on the layer

dF = −α∂∆p

∂x
δx = Kα

∂2y

∂x2
δx
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Again from Newton’s second law we get

dF = δm
∂2y

∂t2
δx = αρ

∂2y

∂t2
δx

So, we get

αρ
∂2y

∂t2
δx = Kα

∂2y

∂x2
δx

∂2y

∂t2
=
K

ρ

∂2y

∂x2

So, the wave velocity

v =

√
K

ρ

Q. Calculate the velocity of sound in a gas.

Newton’s correction:

When a sound wave propagates in a gas, the pressure changes so rapidly that

there is no change of teperature of the layer. Hence the process is isothermal. So, we

can write

PV = constant

PdV + V dp = 0

dP

−dV
V

= P

K = P

So, velocity of sound

VN =

√
K

ρ
=

√
P

ρ

But VN < Vexpt, So there is a discrepancy between experiment and theory. This is

removed by Laplace by considering adiabatic process.

PV γ = constant

γPV γ−1dV + V γdP = 0
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γPdV = −V dp
dP

−dV
V

= γP

K = γP

So, velocity of sound

VL =

√
K

ρ
=

√
γP

ρ

Here, VL = Vexpt

Q. Calculate the velocity of longitudinal waves in a solid.

Let a longitudinal wave propagates along x-axis in a solid bar. Now, we consider

a layer AB at a distance x from O and thickness of the layer AB= dx.

Let α is the area of the layer.

So, volume of the layer V = αdx

Let there is an excess pressure between the faces of the layer AB. So the particles

on the planes A and B are displaced due to the excess pressure ∆P produced by the

progressive wave.

Excess compressive force ∆F = ∆Pα

Let displacement of the layer A is y and that of B is y + dy.

According to the fig.

OA′ = x+ y

OB′ = x+ dx+ y + dy = x+ dx+ y +
∂y

∂x
δx
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Thickness of the displaced layer

A′B′ = OB′ −OA′ = (x+ dx+ y +
∂y

∂x
δx)− (x+ y) = dx+

∂y

∂x
δx

Longitudinal strain

= A′B′ − AB = dx+
∂y

∂x
δx− dx =

∂y

∂x
δx

We have from the definition of Young modulus

Y = −
∆F
α

∂y
∂x
δx

δx

∆F = −Y α∂y
∂x

This is negative because the unbalanced force is in the negative x-direction. So, the

excess force acting on the layer

dF = −α∂∆F

∂x
δx = Y α

∂2y

∂x2
δx

Again from Newton’s second law we get

dF = δm
∂2y

∂t2
δx = αρ

∂2y

∂t2
δx

So, we get

αρ
∂2y

∂t2
δx = Y α

∂2y

∂x2
δx

∂2y

∂t2
=
Y

ρ

∂2y

∂x2

So, the wave velocity

v =

√
Y

ρ
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